Science Highlights

WarpX can be used in many domains of laser-plasma science, plasma physics, accelerator physics and beyond. Below, we collect a series of scientific publications that used WarpX. Please acknowledge WarpX in your works, so we can find your works.

Is your publication missing? Contact us or edit this page via a pull request.

Plasma-Based Acceleration

Scientific works in laser-plasma and beam-plasma acceleration.

  1. Wang J, Zeng M, Li D, Wang X, Gao J. High quality beam produced by tightly focused laser driven wakefield accelerators. arXiv pre-print, 2023. DOI:10.48550/arXiv.2304.10730

  2. Fedeli L, Huebl A, Boillod-Cerneux F, Clark T, Gott K, Hillairet C, Jaure S, Leblanc A, Lehe R, Myers A, Piechurski C, Sato M, Zaim N, Zhang W, Vay J-L, Vincenti H. Pushing the Frontier in the Design of Laser-Based Electron Accelerators with Groundbreaking Mesh-Refined Particle-In-Cell Simulations on Exascale-Class Supercomputers. SC22: International Conference for High Performance Computing, Networking, Storage and Analysis (SC). ISSN:2167-4337, pp. 25-36, Dallas, TX, US, 2022. DOI:10.1109/SC41404.2022.00008 (preprint here)

  3. Zhao Y, Lehe R, Myers A, Thevenet M, Huebl A, Schroeder CB, Vay J-L. Plasma electron contribution to beam emittance growth from Coulomb collisions in plasma-based accelerators. Physics of Plasmas 29, 103109, 2022. DOI:10.1063/5.0102919

  4. Wang J, Zeng M, Li D, Wang X, Lu W, Gao J. Injection induced by coaxial laser interference in laser wakefield accelerators. Matter and Radiation at Extremes 7, 054001, 2022. DOI:10.1063/5.0101098

  5. Miao B, Shrock JE, Feder L, Hollinger RC, Morrison J, Nedbailo R, Picksley A, Song H, Wang S, Rocca JJ, Milchberg HM. Multi-GeV electron bunches from an all-optical laser wakefield accelerator. Physical Review X 12, 031038, 2022. DOI:10.1103/PhysRevX.12.031038

  6. Mirani F, Calzolari D, Formenti A, Passoni M. Superintense laser-driven photon activation analysis. Nature Communications Physics volume 4.185, 2021. DOI:10.1038/s42005-021-00685-2

  7. Zhao Y, Lehe R, Myers A, Thevenet M, Huebl A, Schroeder CB, Vay J-L. Modeling of emittance growth due to Coulomb collisions in plasma-based accelerators. Physics of Plasmas 27, 113105, 2020. DOI:10.1063/5.0023776

Laser-Plasma Interaction

Scientific works in laser-ion acceleration and laser-matter interaction.

  1. Fedeli L, Huebl A, Boillod-Cerneux F, Clark T, Gott K, Hillairet C, Jaure S, Leblanc A, Lehe R, Myers A, Piechurski C, Sato M, Zaim N, Zhang W, Vay J-L, Vincenti H. Pushing the Frontier in the Design of Laser-Based Electron Accelerators with Groundbreaking Mesh-Refined Particle-In-Cell Simulations on Exascale-Class Supercomputers. SC22: International Conference for High Performance Computing, Networking, Storage and Analysis (SC). ISSN:2167-4337, pp. 25-36, Dallas, TX, US, 2022. DOI:10.1109/SC41404.2022.00008 (preprint here)

  2. Hakimi S, Obst-Huebl L, Huebl A, Nakamura K, Bulanov SS, Steinke S, Leemans WP, Kober Z, Ostermayr TM, Schenkel T, Gonsalves AJ, Vay J-L, Tilborg Jv, Toth C, Schroeder CB, Esarey E, Geddes CGR. Laser-solid interaction studies enabled by the new capabilities of the iP2 BELLA PW beamline. Physics of Plasmas 29, 083102, 2022. DOI:10.1063/5.0089331

  3. Levy D, Andriyash IA, Haessler S, Kaur J, Ouille M, Flacco A, Kroupp E, Malka V, Lopez-Martens R. Low-divergence MeV-class proton beams from kHz-driven laser-solid interactions. Phys. Rev. Accel. Beams 25, 093402, 2022. DOI:10.1103/PhysRevAccelBeams.25.093402

Particle Accelerator & Beam Physics

Scientific works in particle and beam modeling.

High Energy Astrophysical Plasma Physics

Scientific works in astrophysical plasma modeling.

  1. Klion H, Jambunathan R, Rowan ME, Yang E, Willcox D, Vay J-L, Lehe R, Myers A, Huebl A, Zhang W. Particle-in-Cell simulations of relativistic magnetic reconnection with advanced Maxwell solver algorithms. arXiv pre-print, 2023. DOI:10.48550/arXiv.2304.10566

Microelectronics

ARTEMIS (Adaptive mesh Refinement Time-domain ElectrodynaMIcs Solver) is based on WarpX and couples the Maxwell’s equations implementation in WarpX with classical equations that describe quantum material behavior (such as, LLG equation for micromagnetics and London equation for superconducting materials) for quantifying the performance of next-generation microelectronics.

  1. Sawant S S, Yao Z, Jambunathan R, Nonaka A. Characterization of Transmission Lines in Microelectronic Circuits Using the ARTEMIS Solver. IEEE Journal on Multiscale and Multiphysics Computational Techniques, vol. 8, pp. 31-39, 2023. DOI:10.1109/JMMCT.2022.3228281

  2. Kumar P, Nonaka A, Jambunathan R, Pahwa G and Salahuddin S, Yao Z. FerroX: A GPU-accelerated, 3D Phase-Field Simulation Framework for Modeling Ferroelectric Devices. arXiv preprint, 2022. arXiv:2210.15668

  3. Yao Z, Jambunathan R, Zeng Y, Nonaka A. A Massively Parallel Time-Domain Coupled Electrodynamics–Micromagnetics Solver. The International Journal of High Performance Computing Applications, 36(2):167-181, 2022. DOI:10.1177/10943420211057906

High-Performance Computing and Numerics

Scientific works in High-Performance Computing, applied mathematics and numerics.

Please see this section.