Acknowledge WarpX

Please acknowledge the role that WarpX played in your research.

In presentations

For your presentations, you can find WarpX slides here. Several flavors are available:

  • full slide

  • half-slide (portrait or landscape format)

  • small inset.

Feel free to use the one that fits into your presentation and adequately acknowledges the part that WarpX played in your research.

In publications

Please add the following sentence to your publications, it helps contributors keep in touch with the community and promote the project.

Plain text:

This research used the open-source particle-in-cell code WarpX https://github.com/ECP-WarpX/WarpX, primarily funded by the US DOE Exascale Computing Project. Primary WarpX contributors are with LBNL, LLNL, CEA-LIDYL, SLAC, DESY, CERN, and Modern Electron. We acknowledge all WarpX contributors.

Latex:

\usepackage{hyperref}
This research used the open-source particle-in-cell code WarpX \url{https://github.com/ECP-WarpX/WarpX}, primarily funded by the US DOE Exascale Computing Project.
Primary WarpX contributors are with LBNL, LLNL, CEA-LIDYL, SLAC, DESY, CERN, and Modern Electron.
We acknowledge all WarpX contributors.

Latest WarpX reference

If your project leads to a scientific publication, please consider citing the paper below.

  • Fedeli L, Huebl A, Boillod-Cerneux F, Clark T, Gott K, Hillairet C, Jaure S, Leblanc A, Lehe R, Myers A, Piechurski C, Sato M, Zaim N, Zhang W, Vay J-L, Vincenti H. Pushing the Frontier in the Design of Laser-Based Electron Accelerators with Groundbreaking Mesh-Refined Particle-In-Cell Simulations on Exascale-Class Supercomputers. SC22: International Conference for High Performance Computing, Networking, Storage and Analysis (SC). ISSN:2167-4337, pp. 25-36, Dallas, TX, US, 2022. DOI:10.1109/SC41404.2022.00008 (preprint here)

Prior WarpX references

If your project uses a specific algorithm or component, please consider citing the respective publications in addition.

  • Huebl A, Lehe R, Zoni E, Shapoval O, Sandberg R T, Garten M, Formenti A, Jambunathan R, Kumar P, Gott K, Myers A, Zhang W, Almgren A, Mitchell C E, Qiang J, Sinn A, Diederichs S, Thevenet M, Grote D, Fedeli L, Clark T, Zaim N, Vincenti H, Vay JL. From Compact Plasma Particle Sources to Advanced Accelerators with Modeling at Exascale. Proceedings of the 20th Advanced Accelerator Concepts Workshop (AAC’22), submitted 2023. arXiv:2303.12873

  • Huebl A, Lehe R, Mitchell C E, Qiang J, Ryne R D, Sandberg R T, Vay JL. Next Generation Computational Tools for the Modeling and Design of Particle Accelerators at Exascale. Proceedings of the 2022 North American Particle Accelerator Conference (NAPAC’22), TUYE2, pp. 302-306, 2022. arXiv:2208.02382, DOI:10.18429/JACoW-NAPAC2022-TUYE2

  • Fedeli L, Zaim N, Sainte-Marie A, Thevenet M, Huebl A, Myers A, Vay JL, Vincenti H. PICSAR-QED: a Monte Carlo module to simulate Strong-Field Quantum Electrodynamics in Particle-In-Cell codes for exascale architectures. New Journal of Physics 24 025009, 2022. DOI:10.1088/1367-2630/ac4ef1

  • Zoni E, Lehe R, Shapoval O, Belkin D, Zaim N, Fedeli L, Vincenti H, Vay JL. A hybrid nodal-staggered pseudo-spectral electromagnetic particle-in-cell method with finite-order centering. Computer Physics Communications 279, 2022. DOI:10.1016/j.cpc.2022.108457

  • Myers A, Almgren A, Amorim LD, Bell J, Fedeli L, Ge L, Gott K, Grote DP, Hogan M, Huebl A, Jambunathan R, Lehe R, Ng C, Rowan M, Shapoval O, Thevenet M, Vay JL, Vincenti H, Yang E, Zaim N, Zhang W, Zhao Y, Zoni E. Porting WarpX to GPU-accelerated platforms. Parallel Computing. 2021 Sep, 108:102833. DOI:10.1016/j.parco.2021.102833

  • Shapoval O, Lehe R, Thevenet M, Zoni E, Zhao Y, Vay JL. Overcoming timestep limitations in boosted-frame Particle-In-Cell simulations of plasma-based acceleration. Phys. Rev. E Nov 2021, 104:055311. arXiv:2104.13995, DOI:10.1103/PhysRevE.104.055311

  • Vay JL, Huebl A, Almgren A, Amorim LD, Bell J, Fedeli L, Ge L, Gott K, Grote DP, Hogan M, Jambunathan R, Lehe R, Myers A, Ng C, Rowan M, Shapoval O, Thevenet M, Vincenti H, Yang E, Zaim N, Zhang W, Zhao Y, Zoni E. Modeling of a chain of three plasma accelerator stages with the WarpX electromagnetic PIC code on GPUs. Physics of Plasmas. 2021 Feb 9, 28(2):023105. DOI:10.1063/5.0028512

  • Rowan ME, Gott KN, Deslippe J, Huebl A, Thevenet M, Lehe R, Vay JL. In-situ assessment of device-side compute work for dynamic load balancing in a GPU-accelerated PIC code. PASC ‘21: Proceedings of the Platform for Advanced Scientific Computing Conference. 2021 July, 10, pages 1-11. DOI:10.1145/3468267.3470614

  • Vay JL, Almgren A, Bell J, Ge L, Grote DP, Hogan M, Kononenko O, Lehe R, Myers A, Ng C, Park J, Ryne R, Shapoval O, Thevenet M, Zhang W. Warp-X: A new exascale computing platform for beam–plasma simulations. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2018 Nov, 909(12) Pages 476-479. DOI: 10.1016/j.nima.2018.01.035

  • Kirchen M, Lehe R, Jalas S, Shapoval O, Vay JL, Maier AR. Scalable spectral solver in Galilean coordinates for eliminating the numerical Cherenkov instability in particle-in-cell simulations of streaming plasmas. Physical Review E. 2020 July, 102(1-1):013202. DOI: 10.1103/PhysRevE.102.013202

  • Shapoval O, Vay JL, Vincenti H. Two-step perfectly matched layer for arbitrary-order pseudo-spectral analytical time-domain methods. Computer Physics Communications. 2019 Feb, 235, pages 102-110. DOI: 10.1016/j.cpc.2018.09.015

  • Lehe R, Kirchen M, Godfrey BB, Maier AR, Vay JL. Elimination of numerical Cherenkov instability in flowing-plasma particle-in-cell simulations by using galilean coordinates. Physical Review E. 2016 Nov, 94:053305. DOI: 10.1103/PhysRevE.94.053305